Gene Mapping in Complex Epilepsies

Jocelyn F. Bautista, M.D. Cleveland Clinic

Monogenic vs. Complex Disease

- Monogenic disease = single gene of "major effect"
- Complex disease = multiple genes of "minor effect" + environment
- Genetic architecture: rare vs. common variants
- Analytical approach: genome-wide vs. candidate gene; linkage vs. association

Dissecting Complex Disease

Linkage Analysis

Family-based

Locates disease-causing genes by analyzing DNA segments that are co-inherited with the disease

Very successful for monogenic disease

Association Studies

Case-control or family-based

Locates disease-causing genes by determining which DNA segments are more common in cases vs. controls

Not able to detect rare variants

Genetic locus heterogeneity

Covariate-based Linkage Analysis

Modifications to allow for genetic heterogeneity

Nonparametric linkage analysis with covariates (clinical phenotypic variables)

Allows detection of genetically distinct subtypes based on the covariates chosen

Choice of covariates

Guided by biology, epidemiology

Dissecting Complex Disease

Linkage analysis with covariates increases power to detect linkage

allows detection of genetically distinct subtypes based on the covariates chosen

Choice of covariates

those with greatest familial correlation

identify endophenotypes that are more likely to be genetically determined

Dissecting Complex Disease

Future Opportunities

Refining the phenotype

imaging, pathology, cellular and molecular endophenotypes

Implementing new analytical techniques

genome-wide association studies

Analyzing epigenetic effects

parent-of-origin effects; imprinting

Acknowledgements

Hans Lüders, MD, PhD (Cleveland Clinic, Case Western)

Robert Elston, PhD (Case Western)

Katrina Goddard, PhD

Courtney Gray-McGuire, PhD

Sudha Iyengar, PhD

Jane Olson, PhD

Ruth Ottman, PhD (Columbia Univ)

S.A.G.E. (NCRR RR03655)

NIH NINDS K23 NS052548